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Diffuse Scattering in Electron Diffraction Patterns. 
I. General Theory and Computational Methods 
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The solution of the n-beam dynamical theory of the diffraction of electrons by crystals is generalized 
to cover the case of diffraction by crystals containing defects and disorders, including thermal motion. 
The conditions and assumptions under which pra&ical computer calculations of diffuse intensities can 
be made are explored on the basis of the slice approach of Goodman and Moodie, although matrix 
methods are equally applicable. It is shown that, if the range of correlation of the deviations from the 
perfect crystal lattice is small, the total diffuse scattering can be expressed in terms of dynamical factors 
which multiply the intensities calculated using the kinematical approximation. Simple expressions are 
derived for the absorption coefficients which must be applied to the sharp Bragg reflexions to take 
account of the energy lost from them into the diffuse scattering. The possibility that the intensity of 
diffuse scattering may show dependence on the range of correlation of the defects is discussed. 

1. Introduction 

Especially since improved techniques have made it pos- 
sible to observe single-crystal spot patterns from very 
small single crystals, a great many observations have 
been made of diffuse scattering effects in electron dif- 
fraction patterns, arising from thermal motion of the 
atoms and various types of defects and disorder in the 
crystal. In many cases these observations parallel those 
made on single crystals by X-ray diffraction methods, 

but the relative ease of observation of the effects in 
electron diffraction patterns, the possibility of using 
extremely small crystals, and the increasing evidence 
for effects not directly comparable with those familiar 
from X-ray work are all factors which suggest that a 
sound basis for the interpretation of the observed 
intensities would be of great value. 

Following the initial work of Yoshioka (1957), con- 
cerning the effects of inelastic diffuse-scattering proces- 
ses, a number of authors have reported theoretical 
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treatments of diffraction from crystals giving various 
types of diffuse scattering. Takagi (1958) treated ther- 
mal diffuse scattering on the basis of the Ewald-Laue 
theory and this theory was later extended to other 
kinds of diffuse scattering by Fujimoto & Howie (1966). 
But, for the most part, authors have been concerned 
only with the consequent addition of absorption co- 
efficients for the Bragg reflexions and, especially when 
results are calculated, have limited themselves almost 
entirely to the assumption of two-beam situations. 
However in the single-crystal electron diffraction pat- 
terns of interest for studies on diffuse scattering it is 
only rarely that there is only one strong diffracted 
beam, in addition to the incident beam, at any one time. 
Some of the most interesting patterns are obtained 
when the incident beam is near to a principal orienta- 
tion, when many strong diffracted beams appear simul- 
taneously for even the most perfect of crystals and 
within any reasonable range of crystal thickness. It is 
therefore necessary to make use of one of the several 
formulations of the n-beam scattering problem. We 
choose to consider, for the most part, the slice formula- 
tion of the n-beam theory due to Cowley & Moodie 
(1957) and the computing methods based on this, de- 
veloped by Goodman & Moodie (1965), but the main 
arguments are independent of the choice of approach 
and reference will be made also to matrix formulations 
such as that of Fujimoto (1959) and the computational 
methods which derive from it, such as that described 
by Fisher (1967). 

A formulation of the theory of diffuse scattering in 
the most general dynamical diffraction conditions has 
been made by Gjonnes (1965, 1966) and calculations 
based on this approach have been reported by Gjonnes 
& Watanabe (1966) and by Fisher (1965) who used 
relatively simple assumptions and dealt with small num- 
bers of diffracted beams. The concepts of the formula- 
tion of Gjonnes form a starting point for the present 
considerations. 

In what follows it will be assumed that the kinemat- 
ical scattering problem for any system considered has 
been, or can be solved. We can express the kinematical 
intensity in terms of the Fourier transform of the gen- 
eralized correlation function G(r, t) of van H ove ( 1954). 
For fast electrons it is usual to make the assumption 
of pseudo-elastic scattering, so that we need consider 
only G(r,0) which is equivalent to the time average of 
the Patterson functions P(r) of the instantaneous con- 
figurations of scattering matter at time t. When the 
kinematical approximation is no longer valid, and dy- 
namical effects are considered, an equivalent formula- 
tion of the scattering problem cannot, in general, be 
made since it is the amplitudes of scattered waves which 
must be added coherently. It is relevant to consider 
under what circumstances it may be a valid approxima- 
tion to use some sort of a localized correlation function 
to derive diffuse scattering under conditions of dynami- 
cal diffraction. If this cannot be done it is necessary to 
work with an actual model of the crystal imperfections 

and from that calculate amplitudes. Such a process is 
necessarily more difficult in practice and more subject 
to uncertainties arising from the particular choice of 
model. 

2. n-Beam calculations 

In the slice formulation of n-beam theory of Cowley & 
Moodie (1957) the electron wave is considered to be 
propagated through successive slices of the crystal, cut 
perpendicular to the beam direction, assumed to be 
the z axis. Back scattering is neglected and a small angle 
approximation may be made if convenient. The pro- 
gress of the wave through one slice, from zn to zn + A z =  
Zn+a involves the modification of the wave by multipli- 
cation with a function q(x,y)  representing the inte- 
grated effect on the amplitude of the potential distri- 
bution (which may be assumed complex) of the slice 
and by convolution by a propagation function, repre- 
senting the effects of Fresnel diffraction on the wave. 
Thus 

Vn+x(x,y)=[Vn(x,y) . qn(x,y)]*pn(x,y) (1) 

where pn(x , y )=exp{ - i k (xZ+yZ) /2Az}  in the small- 
angle approximation. 

It has been shown (Moodie, private communication) 
that in the limiting case that the slice thickness Az 
tends to zero this procedure is completely consistent 
with the solution of the wave equation for electrons 
passing through a crystal. However, for purposes of 
calculation it is necessary to make the approximation 
of assuming a finite slice thickness, Az, so the inte- 
grated effect of the crystal on the electron wave may 
be calculated with a finite number of iterations of the 
procedure represented by equation (1). It has been 
established by Goodman & Moodie (1965 and private 
communication) that no appreciable error is introduced 
into the calculation of intensities of 80 keV electrons 
diffracted from perfect single crystals if the slice thick- 
ness chosen does not exceed about 5 A and that slice 
thicknesses of up to about 10 A introduce errors of 
no more than a few per cent, especially for the stronger 
diffracted beams in the vicinity of the zero order re- 
flexion. It seems reasonable to assume that diffuse 
intensities will be, if anything, less strongly dependent 
on the choice of slice thickness. 

In calculations of diffraction from periodic or near- 
periodic arrays, it is usually more convenient to deal 
with a finite number of discrete diffracted beams, 
rather than the continuous functions involved in (1). 
If ~n, Qn and Pn are the Fourier transforms of Vn, 
qn and pn respectively, we may Fourier-transform (1) 
to give, for the periodic case, 

~n+l(h,k) = 

27 27 7tn(h',k') . Q n ( h - h ' , k -  k') . Pn(h,k) (2) 
h' k" 

so that the computing process is reduced to the multi- 
plication and addition of sets of complex numbers, 
there being one number in each set for each diffracted 
beam. 
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The extension of this computing method to deal with 
diffuse scattering then follows directly. If we assume 
that multiple diffuse scattering is unimportant, we can 
calculate the amplitude of the diffuse scattering due 
to each layer of the crystal separately and then add 
them with the correct phase relationship, i.e. either 
coherently or incoherently according to the statistics 
of the deviations from crystal perfection. For each dif- 
fusely scattering layer, the incident radiation is assumed 
to be the discrete set of Bragg beams with reciprocal 
lattice vectors h calculated for transmission of the radia- 
tion through the preceding crystal (region I) with ap- 
propriate absorption coefficients. In the portion of the 
crystal following the diffuse scattering layer (region III) 
there is dynamical interaction of the diffuse amplitudes 
in directions given by the set of vectors h +v where v 
is any vector in the first Brillouin zone. Thus for each 
v it is necessary to sum the amplitudes for all positions 
of the diffuse scattering layeI. Kinematically the rela- 
tive phases of diffuse scattering amplitudes need never 
be considered and it is generally assumed that relative 
phases cannot be usefully defined. However it is readily 
shown that for kinematical diffuse scattering the rela- 
tive phases of waves scattered in the set of directions 
h + v can be defined if the deviations from crystal per- 
fection occur always at the same positions within the 
unit cell. This latter condition may be a serious limita- 
tion in dealing with more complicated forms of defects, 
but is not so for the simpler forms of defect which 
will concern us most. 

We assume that the scattering potential can be writ- 
ten as 

~o = foo+Afo= foo+A~oo * 27 cnJ(r -  an), 
n 

where ~Oo is periodic, Afoo represents the deviation from 
the periodic structure in one unit cell, cn are arbitrary 
constants and the vectors an represent space-lattice 
translations. We establish the convention that F', AF'  
and AFo represent kinematical structure factors given 
by Fourier transform of fo, Afo and A~oo respectively. 
Then the diffuse scattering amplitude is 

AF'(v) = AFo(v ) 27 cn exp{2zciv, an}, 
n 

and 

AF' (h+v)= 
AFo(h+v ) 27 en exp{ZT~iv, an} exp{27~ih, an}, 

n 

so that 
A r ' ( h  + v) A ro(h + v) 

AF'(v) .... AFo(V)- - , (3) 

and the phase of AF'(h+v) must be defined relative 
to that of AF'(v). 

The 'perfect-crystal' calculations for both the set of 
beams, h, in the region I, and the set of beams h+v  
in region III of the crystal, can of course be carried 
out by use of any valid formulation of n-beam scat- 
tering theory and Fisher (1965), following the general 

scheme of Gjonnes (1965, 1966) used matrix methods 
for this purpose. The initial formulation in this way 
involved the integration of intensities from layers of 
infinitesimal thickness for each z value. However, since 
from the experience of slice-method calculations it is 
clear that no appreciable error is introduced by con- 
sidering the scattering from layers of finite thickness, 
it is possible to assume also for matrix calculations 
that the diffuse scattering may be considered as that 
from layers of one or more unit cells thickness con- 
sidered together. This assumption has been tested and 
found to be accurate and useful by Fisher (private 
communication). 

Finally it is necessary to introduce into the calcula- 
tions some equivalent of the space and time averaging 
which produces the observed intensity experimentally. 

The general correlation function G(r, t), or the anal- 
ogous function for dynamical scattering have, in prac- 
tice, finite extent in all dimensions of space and time. 
In particular in the x , y  directions perpendiculal to the 
beam direction, assumed to be the z axis, the extent 
is limited by the geometric coherence of the incident 
beam, if by nothing else. The range of this lateral co- 
herence is normally between 100 and 1000 A (Cowley, 
1961) so that for specimens of greater extent than this 
the diffraction pattern is the sum of intensities from a 
large number of independently scattering regions. If it 
can be assumed that the distribution of the crystal de- 
fects giving diffuse scattering is uniform over the speci- 
men, these independently scattering regions can be con- 
sidered equivalent states of one scattering region. Thus, 
even for static defects, the summation of intensities 
from such regions will be equivalent to a time average 
of intensities from a single region with a suitably weak 
time dependence of defect configuration. Hence for 
dynamical as well as kinematical scattering, time- and 
space-averaging may be considered interchangeable for 
quasi-elastic scattering processes. 

3. General formulation of the scattering problem 

Formally, we may write down the solution of the scat- 
tering problem for the configuration of scattering po- 
tential at any one time by generalizing the result ob- 
tained by Cowley & Moodie (1957) and also by Fuji- 
moto (1959) and Fujiwara (1959) for diffraction by a 
perfect crystal; namely that the amplitude for a dif- 
f'acted beam, h, may be expressed in the form 

~ t ( h )  = ~ '  , ~ . . . , ~ . . .  F t 0 1 1 ) F 2 ( h 2 ) . . .  
hl h2 hn 

Fn(h,)...Z(~... ~',~...,n), 

where Fn(hn) is the complex structure factor given by 
the Fourier transform of the transmission function for 
the nth layer, qn(x,y)=exp{i~z~n(x,y)}, where tz= 

(OZn+,4z 
2z~me2/h z, q~n(x,y) = ~. ~,, ~(x,y ,z)dz and ¢(xyz) is the 

potential distribution function, which may be assumed 

A C 24A - 8 
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to be complex: fin represents the set of excitation errors 
associated with the nth diffraction process and H is 
the crystal thickness, so that the function Z ( . . .  ~n. • ,H) 
depends only on the geometry of the scattering pro- 
cesses and not on the nature or configuration of the 
scattering potential distribution. For a non-periodic 
distribution of scattering potential the Fn and ~n be- 
come functions of continuous variables, Un, and the 
summations may be replaced by integrals to give 

I 
Z ( . . . ~ n . . . , H ) . . . d u n .  (4) 

Then 

Iobs(u) = (Vt(u) • V~(u)) 

=Ill III < > 
Z ( . . . ~ n . . . , H ) .  

Z * ( . . . ~ m . . . , n ) . . . d u n . . . d u r a . . . ,  (5) 

where the brackets ( . . . )  denote time averaging. This 
expression may be written in terms of the contributions 
by individual atoms by putting 

Fn(un) = Z fni(Un) . exp{2niun, rng}, (6) 
f 

so that the observed intensity is expressed in terms of 
the positions and scattering functions for all atoms at 
all times. 

For example, if we consider diffuse scattering due 
to thermal motions of atoms, the atomic scattering 
functions fn~(Un) may be replaced at any one time by 

fm(un) . exp{2niun. Z A~s 
js 

cos(o)~st-kj, rn~-~js)}, (7) 

where j numbers the phonon wave of mode s having 
amplitude A~s, wave vector kj and phase cgs. Following 
Hoppe (1964), for example, we may Fourier-analyse 
(7) to give a product of series of Bessel functions, 

f,~(u,), r/j~ [J0(2nu,. Aj,) + 2: 
p 

2ivJv(2nu~.  &~) .  cos {p(ogjst-kl. rn~-cgs)}] • 

Putting this into (6) and substituting in (4) or (5) the 
total scattering can be analysed into contlibutions to 
the sharp Bragg reflexions and contributions to the dif- 
fuse scattering. Thus the amplitude (4) will contain 
time-independent terms in which the fn~(Un) are multi- 
plied by the temperature factors, Hjs{Jo( . . . )} ,  which 
in the harmonic approximations are the usual Debye- 
Waller factors (Slater, 1958). As shown later, the Bragg 
reflexions will also be modified by an absorption-like 
term corresponding to a loss of energy to the diffuse 
scattering or a virtual inelastic scattering process. 

The first-order diffuse scattering term, correspond- 
ing to 'single-phonon' events, will be given by all first 
order terms of the form 

• /1 (2nUn. Ajs). 2 i cos (Og~sr- k j .  rni - C~js) 
f.~(u.). Jo (2rm.. &.) ' 

which may be simplified by making the approximation 
Jl(X)/Jo(X) =x ,  which is very good for small x. Then 
there will be two types of 'double-phonon' term for 
each point in reciprocal space, which will be added 
coherently since they arise from the same two phonon 
waves. One arises from single scattering from the sum 
of two simultaneous phonon-wave displacements of an 
atom: the other corresponds to a double scattering 
process, or successive scatterings by the two waves. 

Higher order diffuse scattering terms follow, but 
these are usually neglected. More detailed discussion 
of these various terms will be given in subsequent pub- 
lications. 

In making calculations of diffuse scattering it is, of 
course, impracticable to proceed by attempting to eval- 
uate the infinite set of integrals (5) with the substitu- 
tions of (6) and (7). Instead, the slice or matrix methods, 
mentioned above, may be applied with suitable approx- 
imations. 

For example, if only single diffuse scattering terms 
are to be considered fol the thermal diffuse case, for 
each set of related points in the diffraction pattern the 
diffuse amplitude terms could be calculated separately 
for each of the appropriate cosine waves chosen out 
of the series given in (7); then these diffuse amplitudes 
could be combined according to the assumptions of 
relative phases of the various vibrational waves. 

In all publications to date dealing with thermal dif- 
fuse scattering in electron diffraction the assumption 
has been made, explicitly or implicitly, that the indi- 
vidual periodic vibrational waves may be considered 
to be completely independent and unrelated in phase, 
i.e. that the intensities corresponding to the individual 
terms in the series (7) may be added together when 
single diffuse scattering is considered. This may be true, 
at least as a very good approximation, in considera- 
tions of kinematical scattering but is not necessarily 
true for dynamical scattering. 

As is well known, the life-time and mean free path 
of phonons are limited by phonon-phonon and other 
interactions. Consequently we should consider the dif- 
fraction from phonon wave-packets of finite extent. In 
neutron diffraction experiments the particulate nature 
of the phonon shows up as a finite breadth of the peaks 
in the plots of intensity versus energy for a particular 
scattering angle, (see e.g. Brockhouse, 1964). Since for 
electron scattering the energy losses due to phonons 
may usually be considered negligible, the quasi-elastic 
scattering approximation is very good and such effects 
will not be observable. We may take into account the 
wave-packet nature of the phonon by considering a 
correlation function G(r, 0), for deviations from crystal 
perfection, which is of finite extent. The available evi- 
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dence suggests that the range of correlation involved 
is of the order of a hundred A and so is of about the 
same order of magnitude as the 'extinction distances' 
common in electron diffraction. This suggests that in 
dynamical diffraction processes involving scattering 
from such phonons, the finite correlation range may 
be of significance. 

A phonon wave packet may be described as the sum 
of cosine waves, having a finite range of wavelength, 
which are in phase at one particular point at a given 
time. This suggests that amplitudes rather than inten- 
sities of diffusely scattered beams should be added for 
groups of vibrational waves with neighbouring k vec- 
tors. 

Alternatively, one may assume that, for any given 
time, the amplitudes of diffuse scattering should be 
added for atoms within a finite wave packet, i.e. for 
atom displacements described by a cosine wave mod- 
ulated by a finite envelope. Then the independence of 
separate phonons and the time averaging process are 
taken into account by adding intensities for all pos- 
sible wave packet configurations. 

The treatment of thermal diffuse scattering can then 
be brought into line with the treatments appropriate 
for diffuse scattering from short-range order in alloys 
or from localized lattice defects (isolated or clustered 
point defects) which may best be described in terms 
of a correlation function of limited extent. Considera- 
tions of the diffraction problem in these terms will be 
explored in the following sections and in subsequent 
papers. 

The dependence of dynamical intensities on the range 
of correlation of deviations from the crystal lattice may 
perhaps be appreciated more readily by considering the 
analogous situation relating to correlations of the aver- 
age atomic positions in crystals. For purely kinematic 
scattering it is well known that the integrated intensity 
of a reflexion is independent of the average size of the 
individual perfect crystal regions whereas, for dynam- 
ical scattering, the average size of the individual perfect 
crystal region determines the 'extinction' effects which 
become appreciable when this size is comparable with 
the 'extinction distances' for the reflexions concerned• 
The same extinction distances will be relevant for the 
phonon ease since the amplitudes and phases of the 
diffusely scattered beams depend on those of the Bragg 
beams which excite them. 

4. Defect correlations within slices 

It was pointed out in § 2 that for the usual range of 
electron energies, the thickness of slice which can be 
treated by the simple phase-object approximation with- 
out introducing appreciable errors is of the order of 
5 to 10 A for calculations of diffraction from perfect 
single crystals and may well be greater for calculation 
of diffuse scattering. There is an immediate simplifica- 
tion of the calculation of diffuse scattering if it can 
be assumed that the diffuse scattering from adjacent 

slices can be considered as independent, i.e. if the range 
of correlation function G(r,0) can be assumed to be 
less than the slice thickness in the beam direction. This 
follows from consideration of equation (5). 

Suppose that, for each slice, now considered to be 
of finite thickness, we can write 

Fn(u) = Fn(u) + AFn(u), 

where f in and dFn are the spatially periodic, time- 
averaged part and the non-periodic, time dependent 
parts of Fn(u) respectively. 

Then 
fin(u) = .~- (exp{ ia~on(x, y)  } ) ,  

where 

so that, if 
~On(x,y)=~Oon(x,y) + A~on(x ,y ) ,  

F0n(u) =~"  exp{ ia~oon(x ,y )} ,  
then 

fin(u)= ron(U)*[O(u)-½(AF'n(u)*Ar 'n(U))  + . . .  ] ,  (8) 
while 

A rn(u) = F0n(u)* [iA r~(u) 
- ½ ( A r ' , , ( u ) . A r ' , , ( u ) -  ( A F ' , , ( u ) . A r ' , , ( u ) ) ) -  . . . ] 

- V0n(u) * AFt(u). (9) 

As before, the AFt(u) are the kinematical values given 
by ,,~'A~on(x,y). Hence we may write for each F in the 
general expression (4), 

Fn(u) = fin(u) + F o n ( u ) * A F ; ( u ) ,  

and the product of the Fn(u) may be written as a series 
of terms in increasing powers of the small factors 

o 
Arn(u). 

The first term of zero order in these factors contains 
only the product of the fin(u) which are sets of delta 
functions. The N - 1  integrals, representing convolu- 
tions for N slices, then reduce to N - 1  summations 
over indices• The corresponding time-independent part 
of equation (5) then gives the intensities of the sharp 
Bragg reflexions. 

The first order terms in AFt(u) vanish, since 
(AFt(u)) = 0 for all n. The second order terms will 
represent diffuse scattering for single slices. Because 
of the form of (9), the number of convolution integrals 
in (5) is increased by two and the corresponding part 
of the observed intensity becomes 

ta 2 n  

f im(um)AF u ( u u ) . . . ) .  

Z ( .  . . ( n .  . . , H )  . Z * ( .  . . ( m .  . . , H ) .  . . d u n .  . . d u m  

• . .  du  v du  a , 

where the replacement of Fort by Fn in one slice should 
create no significant difference. 

• o t t ,  The time average involved, ( A F v ( u v ) .  A F  u (uu)), 
will be zero except for v =/t  because the deviations from 
the average in different slices are assumed to be un- 

A C 2 4 A  - 8* 
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correlated. Taking into account the discrete nature of 
the Fn(u), the single-slice diffuse intensity is given by 
a summation of the form 

I~(u)= X X X I  l .lYn(un). .F*(um) 
~ , v  ~ ; v - i  "" 

t t  . # ,  

. . . (AVv(uv-g) d r y  (Uv-g ' ) ) .  

z ( . . . ~ , . . . , ~ ) ,  z * ( . . . ~ m . . . , H )  

. . . dun . . . dum . . . duv . (10) 

where g and g' are two-dimensional reciprocal lattice 
vectors. Since the functions Fn(Un) consist of sets of 
5-functions, all the integrals on this expression may be 
replaced by summations over sets of integers, hn. The 
time-averaged part of (10) is similar to the equivalent 
factor used by Gjonnes (1966), but here the AF~ need 
not be kinematic structure factors, and also the Bragg- 
beam scattering factors Fn are modified by absorption- 
like terms. The precise significance of these latter terms 
varies, however. In the first part of the crystal (n < v) 
they represent modification of the Bragg-beams by the 
diffuse scattering. In the second part (n> v), where 
Bragg-interaction of diffuse beams occurs, they re- 
present modification of the diffuse beams by multiple 
inter-slice diffuse scattering, and it is perhaps question- 
able whether the modified Fn (rather than F0n) should 
be used in this stage of the calculation unless this 
multiple scattering is to be specifically determined. 

In fact the next contributions to diffuse scattering 
in the expansion involve summations of the form 

X X X X X X (AF~ ( u ; - g ) .  AFt,* ( u ; -  g')) 
g g '  h h '  v p > v  

t,. (AF,, (u-u'-h). AFt* (u-u'-h')), 
representing successive diffuse scattering by two dif- 
ferent slices. Note that 'coherent' double-diffuse scat- 
tering within the slice is contained within A F " ,  and 
also that third-order processes involving real and vir- 
tual scattering are implied in the use of the Jvn. 

In practice, it seems that the direct use of expressions 
such as (10) for the calculation of diffuse intensities 
would scarcely be feasible. In order to perform calcu- 
lations of the diffuse scattering for the case under con- 
sideration, namely for independent diffuse scattering 
from individual slices, it seems more appropriate to 
use and extend the concept of the 'dynamical factor' 
in conjunction with the computing scheme outlined 
above. The 'dynamical factor' is that factor by which 
the diffuse scattering intensity for the crystal, calcu- 
lated kinematically, must be multiplied to give the dy- 
namically calculated diffuse intensity for the whole 
crystal. It is a function of the coordinates in the plane 
of the diffraction pattern, and was calculated for ex- 
ample by Fisher (1965) for several points in the dif- 
fraction patterns given by copper-gold alloys having 
short-range order. 

First we consider the relatively simple case that the 
diffuse scattering from a single slice may be calculated 

kinematically, i.e. (9) becomes 

AFn(u )=  F0n(U) * iAF'n(u) . 

If we are dealing with only one type of defect, oc- 
curring always at the same place in a unit cell, al- 
though possibly with different magnitudes, we may 
write, as in § 2, above. 

A(o=A~o o • X craJ (r--ara) , (11) 
m 

where the cm are real constants associated with the 
lattice translations am. In making computations of dif- 
fuse scattering we deal with a set of points h + v where 
h is the set of reciprocal lattice vectors and v a vector 
in the first Brillouin zone. Then, as before, 

A F ' ( h +  v )=AF 'o (h+  v) . X cm exp{2zciv, am} 
m 

= A F o ( h + v  ) . C(v). 

For the calculation of the diffuse intensity at a set 
of points u = h + v, for a given v, the computing involves 
summations over the sets of indices represented by h 
as in (2). Hence for diffuse scattering from the nth 
layer we can insert the set of values AFo.,,(h+v ) and 
so calculate the corresponding set of final amplitude 
values ~ua,,(h) for the whole crystal. 

Since the diffuse scattering from separate layers is 
assumed to be independent, the total observed inten- 
sity for the set of points h + v is then given by summing 
the intensities from all diffuse-scattering layers: 

Iaobs(h+ V)= Z ICn(v)l z . I ~,,a..(~)l z . 
n 

If the distribution of defects is assumed to be uni- 
form throughout the crystal, all functions I Cn(v)l z will 
be equal, and 

N 

l g b s q a + V ) - - - - I C ( v ) l  z . x I ~ , . , 0 a ) l  z . ( 1 2 )  
n = l  

This may be compared to the kinematic scattering 
intensity for the whole crystal, 

Ia , ,0a+v)= Z ICn(v)l z . IAF'o(h+v)l  z 
r/ 

= N .  IC(v) l  2 . I • V 0 ( h + v ) l  z . ( 1 3 )  

The dynamical factor D(u) is thus given as the ratio 
of the two quantities (12) and (13) for each v so that 
(12) becomes 

laob,(u) = NIC(v)I z . IAFo(u)l z . D(u). 

Then for each new model of the crystal defect con- 
figurations, involving the same type of defect, the inten- 
sity of diffuse scattering is given merely by inserting 
the appropriate function IC(v)l z. It may be noted, of 
course, that I C ( v ) l  2 . IAFo(u)l 2 is the Fourier transform 
of the correlation functions G(r,0), or the difference 
Patterson function, relating to the deviations from the 
average lattice. 

When it is not possible to make a kinematic approx- 
imation for the diffuse scattering from a single slice, 
or when several types of crystal defects occur, the 
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situation is more complicated but simplifying approx- 
imations can usually be made. For example, when we 
must use the phase-grating form of (11), 

exp {i(rAqT} = exp [i(rAq~o • .S Cm& ( r -  am)], 
m 

it may often be a good approximation to write 

exp{iaA~0}- 1 = 
S, [exp{ic~(rA~o}- 1] • S &(r -am~) ,  (14) 
p m 

where am~ represents a vector to a peak containing cp. 
In this case the diffuse scattering function can be writ- 
ten in terms of general deviation structure factors Hp, 
replacing o~[exp{ic~(rAfOo}- 1] in (14), thus 

H(v )=  Z" H~(v). C~(v), 
P 

where 
C~,(v) = Z" exp {27riv. ainu}. 

m 

Then the intensity of diffuse scattering from all slices 
is 

Iaobs(h + v)= Z" IS C~,,(v). ~,,,(h)l 2 
n p 

= Z Z S ,  * CqnC;,~,qv(h). ~*,v(h), 
n q p 

or, if we assume uniformity in the distribution of de- 
fects, 

Ioabs(h + v) = E E CqC* ..S ~,~(h) .  ~*~(h).  (15) 
q p n 

In this, we may note that we can write 

CqC*= .S E exp{2niu. (ana-am~)},  
n m 

and this, plus its complex conjugate, represents the 
Fourier transform of the cross-correlation function for 
the two sets of defects, q and p, which determines the 
corresponding contribution to the intensity of the dif- 
fuse scattering from a single slice. A detailed discussion 
of (15) for the case of diffuse scattering from alloys 
containing short-range order will be contained in a 
future publication. 

For the kinematical case with several different types 
of defect, it is possible to set-up an equivalent formula- 
tion by defining the appropriate set of deviation struc- 
ture factors, Hp. 

If the correlation range for the deviations from the 
average lattice in the beam direction extends beyond 
the distance which can conveniently be used for a single 
slice thickness, the simplifying assumptions of this sec- 
tion can no longer be made. It is, in general, necessary 
to define the relative phases of diffuse scattering from 
successive slices so that amplitudes from the various 
successions of slices may be summed. This is not pos- 
sible purely on the basis of a known or assumed corre- 
lation function. What is required is a detailed model 
of the defects, as in the case of the phonon wave packet 
model for thermal vibrations, mentioned above. 

5. Absorption coefficients for Bragg reflexions 

Any diffraction process resulting in the diffuse scatter- 
ing of some energy into the background of an electron 
diffraction pattern necessarily involves a loss of energy 
by the sharp, Bragg reflexions arising from the aver- 
aged periodic component of the distribution of scat- 
tering potential. This may be interpreted in terms of a 
periodic absorbing function which will give an out-of- 
phase addition to the effective scattering factor. 

If  we assume the diffuse scattering from successive 
crystal slices to be independent, this absorption effect 
can be derived by considering individual slices sep- 
arately. For one slice the Bragg reflexions are given by 

o~ (exp{ ia~o(x, y) } ) 

and the effective absorption function g(x,y) is intro- 
duced by equating this to 

F(n) = o~- exp{ia~oo(X,y)-X(x,y)}, (16) 
where 

~(x,y) = ~0(x,y) + ,a~(x ,y)  

and ~o(x,y) is the time-independent, periodic, averaged 
structure. 

Then 

(exp{ ia~o(x, y) } ) = 

(1 + io'A~o(x,y)-½o'2A~oZ(x,y) + . . . ) .  exp{io'~oo(x,y)} 

=exp{ia~oo(x,y)-ka2(A~o2(x,y))+... }, (17) 

so that as a first approximation the absorption func- 
tion is given by 

X(x, Y) = ½a2(A~o2(x, y) ) , 

where Z(x, JO may be considered as the projection of a 
slice of the three-dimensional absorption function 
X(xyz). But in general X(x,y) will have both real and 
imaginary parts and the imaginary parts may be con- 
sidered as a modification of ~Oo(x,y). The complex 
structure factors Fn(un) as defined by (16) may then 
be used in calculations based on the general equation 
(4), such as the slice method calculation (2), or the 
matrix method. 

It may be noted that ~00(x,y), being the time-averaged 
potential distribution, corresponds to atoms spread out 
by the thermal motion, so that the Debye-Waller factor 
is already contained in ~ exp{ia~oo(x,y)} and is sep- 
arate from the absorption factor here considered. 

For kinematical scattering it can be shown that to a 
good approximation the Debye-Waller factor is inde- 
pendent of the degree or extent of correlation of the 
atomic motions. From the above considerations it is 
clear that this is true also in the dynamical case. Also 
it can be shown that, to the degree of approximation 
which may be considered sufficient for many purposes, 
the absorption factor derived above is independent of 
the correlation of atomic motions or displacements. 

For the case where correlation is confined within 
individual crystal slices, this follows from the form of 
equation (17). When there is correlation between slices 
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we may evaluate the approximation by considering 
transmission through two slices with transmission 
functions qn(x,y) and qm(x,y) where qn(x,y)= 
exp{ia~oon(x,y) + iaA~on(x,y)}. Using the formulation of 
equation (1), the equivalent of equation (I7) is 

({qn(x,y) * p(x,y)} . qra(xy))= 

[exp{ia~00n} * p(xy)], exp{ia~oom} 
a 2 

2 [(exp{ia~oon}. (A~o2n) * p(xy)) ,  exp{iac00m} 

+(exp{iacoon},p(xy)). exp{iG~00m}. (A92m)] 
" ~ . . .  

(7 4 
+ -~- ([exp{ia~00n}. A~o~,p(xy)] exp{icrq~0m}. A~0~) + . . .  

(18) 

Since, in general, (A~0~)= (Afo2~), it is only in the final 
cross product term of this expression and similar terms 
of higher order that there will be any dependence on 
correlations between the functions A~, and A~m. Such 
terms are of the fourth and higher orders of the small 
quantities aA~ and so may often be neglected. Since 
the calculation of the diffuse intensity for the whole 
crystal follows from a repetition of such two-slice cal- 
culations, this argument can be extended to suggest 
validity of the result for complete n-beam calculations. 
Then it can be concluded that, to a good approxima- 
tion, absorption terms calculated from the phase grat- 
ing approximation for a single slice may be used to 
modify the structure factors, or atomic scattering fac- 
tors, used for any formulation of, or approximation to, 
dynamical scattering of electrons by crystals. In par- 
ticular it should be identical with the absorption terms 
calculated by various authors using a two-beam ap- 
proximation to scattering theory. 

6. Conclusion 

In subsequent publications, the principles outlined here 
for the calculation of intensities of diffuse scattering 
will be applied to the detailed consideration of thermal 
diffuse scattering, and the diffuse scattering due to 
short range order and other localized crystal imperfec- 
tions, and the results of calculations will be compared 
with experimental observations. 

However, it is worth pointing out here one general 
conclusion which may be drawn. Deviations from the 
kinematical form of the diffuse scattering will naturally 
result from the dynamical interactions of diffracted 
beams. More fundamental differences from the kine- 
matical result arise because the dynamical scattering 
is not completely determined by the correlation func- 

tion, G(r,0) relating to deviations from the average 
lattice. These differences will presumably be appreci- 
able when tbe range of the correlations of these devia- 
tions is comparable with the thicknesses of crystal 
which give appreciable dynamical effects, i.e. of the 
order of 10 to 100 A, depending on the atomic num- 
bers of elements present. For such cases, it is necessary 
to postulate actual models of the deviations from the 
average lattice. 

While this complicates the calculation of diffuse 
intensities, it also introduces the possibility that dy- 
namical scattering effects may allow an increase in the 
information obtainable from diffuse scattering obser- 
vations. For example from thermal diffuse scattering 
it may be possible to make deductions regarding the 
'size' and 'shape' of phonons and so gain information 
on phonon interactions; and for short-range order dif- 
fuse scattering it may be possible to make some de- 
ductions regarding the vexed question of the nature of 
short-range order; for example, on the validity of the 
model of an alloy with short-range order which sup- 
poses it to consist of arrays of very small out-of-phase 
domains (see e.g. Moss, 1964). The assessment and 
implications of these possibilities will be reported later. 
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